

26thCongress of SCTM

Sept. 20-23, 2023, Metropol Lake Resort, Ohrid, N. Macedonia

Multifunctionalcotton Impregnated with Multilayer Chitosan/Lignin Nanocoating and Ag Nanoparticles

<u>D. Marković</u>, ^a J. Petkovska, ^b N. Mladenovic, ^b M. Radoičić, ^c D. Rodriguez-Melendez, ^d M. Radetić, ^{e*}J. C. Grunlan^{d,f,g} and I. Jordanov^b

^aInnovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia

^bDepartment of Textile Engineering, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia

^c"Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia ^dDepartment of Chemistry, Texas A&M University, College Station, USA ^eTextile Engineering Department, Faculty of Technology and Metallurgy, University of

Belgrade, Belgrade, Serbia

^fDepartment of Materials Science and Engineering, Texas A&M University, College Station,

USA

⁸Department of Mechanical Engineering, Texas A&M University, College Station, USA <u>*maja@tmf.bg.ac.rs</u>

The demand for clothes with antimicrobial and UV protective properties is continually growing. In an attempt to develop a simple and efficient treatment for cotton fabrics, layer-by-layer deposition of chitosan and magnesium lignosulfonate followed by in situ synthesis of Ag nanoparticles (NPs) was performed. Magnesium lignosulfonate acts as a stabilizing agent and UV blocker while NaBH₄ is applied as a reducing agent. The influence of the number of bilayers (4 and 12) and the initial concentration of AgNO₃ solution (10 mM and 20 mM) on UV protection factor (UPF) and antimicrobial activity against Gram-negative bacteria *Escherichia coli*, Grampositive bacteria *Staphylococcus aureus* and yeast *Candida albicans* was studied. The presence of nanocoating on the surface of cotton fabric is confirmed by FTIR and XPS analyses. XPS and FESEM analyses reveal a successful synthesis of Ag NPs on the surface of cotton fibers with an average dimension of 35 nm. A four bilayer coating is sufficient to reach maximum 50+ UV protection. Maximum reduction of all investigated microorganisms is achieved with 12 bilayers and application of 20 mM AgNO₃ solution.

Keywords: cotton, chitosan/lignin nanocoatings, Ag nanoparticles, antimicrobial activity, UV protection

Acknowledgement:

The authors would like to thank the NATO Science for Peace and Security (SPS) program for their funding through the G5905 (MULProTex) project.