26thCongress of SCTM

Sept. 20-23, 2023, Metropol Lake Resort, Ohrid, N. Macedonia

Investigation of Co_{0.9}Ho_{0.1}MoO₄ Nanopowders Obtained by Glycine Nitrate Procedure

<u>M. Rosić^{a*}</u>, M. Milošević^b, M. Čebela^a, V. Dodevski^a, V. Lojpur^c, R. Ljupković^d and A. Zarubica^d

^a Laboratory for Material Science, Institute of Nuclear Sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia

^b Department of Mineralogy, Crystallography, Petrology and Geochemistry, Faculty of Mining and Geology, University of Belgrade, Dušina 7, 11000 Belgrade, Serbia

^c Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia

^d Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia

*mrosic@vinca.rs

Nanometric size $Co_{0.9}Ho_{0.1}MoO_4$ powder particles were obtained by applying glycine nitrate procedure (GNP). Powder properties have been studied by DTA, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, Spectroscopy, Field emission scanning electron microscopy (FESEM), and nitrogen adsorption method. The photocatalytic activity of acquiring $Co_{0.9}Ho_{0.1}MoO_4$ nanopowders was estimated by the photocatalytic degradation of crystal violet in an aqueous solution. We present a simple and effective method for controlling the composition and morphology of $Co_{0.9}Ho_{0.1}MoO_4$, as well as a possible new approach in inorganic synthesis methodology. During photocatalytic testing, the studied nanoparticle powder indicated a potentially promising solution in photocatalytic processes toward green chemistry and sustainable development.

Keywords: X-ray diffraction, Electron microscopy, Nanostructured materials

Reference:

1. Rosić, M.; Zarubica, A.; Šaponjić, A.; Babić, B.; Zagorac, J.; Jordanov, D.; Matović, B.; *Materials Research Bulletin* **98** (2018) 111–120.